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.. Outline

♢Background of the problem;

♢ Definition of Markov processes with darning;

♢ Main Results: Construction of Markov processes with
darning;

♢ Further work
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.. Markov boundary theory

Given the minimal Markov process X 0 on domain D, one
constructs and characterizes all of Markovian extensions of X 0

such that they spend zero Lebesgue amount of time outside of
D.
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.. Brief history on boundary theory

♢ Boundary theory for one-dimensional diffusions is well
understood thanks to the fundamental work of Feller (1954).
—Analytic

♢ For Markov chain with countable states, significant
progresses has been made by K.L.Chung (1970), Z.T.Hou
(1978), M.F.Chen (1986) and X.Q.Yang (1990),etc.

♢ K.Ito (1970) use excursion theory and Poisson point
processes to construct general Markovian extension of the
minimal diffusions.—Probabilistic.
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.. Development

Currently, satisfactory progress has been made for symmetric
Markov progresses

♢ Fukushima and Tanaka (2005) study one point extension of
symmetric diffusions.

♢ In Chen and Fukushima (2008), Markovian extensions of the
minimal processes are carried out through Poisson point
processes of excursions.

♢ One point extension of nonsymmetric Markov processes are
obtained for Markov processes with darning. (Chen, Fukushima
and Ying(2010))
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.. What is Brownian motion with darning?

(i) N = 1 and K is a non-polar connected compact subset of Rd .

(ii) N = 1 and K = ∂B(0,1). D∗ is homeomorphic to the plane
with a sphere sitting on top of it.
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.. What is Brownian motion with darning?

E ⊂ Rd , A1, . . . ,AN are disjoint compact subsets of E . Let
D = E \ ∪N

j=1Aj . BMD on E∗ := D ∪ {a∗
1, . . . , a

∗
N} is a Brownian

motion in E by “shorting” each Aj into a single point a∗
j .

.
Definition..

.

. ..

.

.

Brownian motion with darning (BMD) X ∗ is an m-symmetric
diffusion on E∗ such that
(i) its part process in D has the same law as W D;
(ii) it admits no killings on K ∗.

It follows that X ∗ spends zero Lebesgue amount of time at K ∗.
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.. Existence and Uniqueness

Fukushima-Tanaka (2005): connected Aj .
Chen-Fukushima (2007, 2011): general compact Aj .

.
Theorem (Chen-Fukushima, 2011)
..
.
. ..

.

.BMD exists and is unique in law.

Two dimensional BMD has conformal invariance and can be
used to study Komatu-Loewner equations in multiply connected
domains. Chen-Fukushima-Rohde, Chen-Fukushima,
Chen-Fukushima-Suzuki.

Construction:

(1) X ∗ can be constructed by using Poisson point process of
excursions of killed Brownian motion in D.

(2) A more direct way is through Dirichlet form method. Chen
(2012), Chen-Fukushima-Rohde (TAMS 2016)
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. . . . . .

.. What is Markov process with darning?

Let X be an m-symmetric strong Markov process on E with
supp[m] = E . Suppose A1, . . . ,AN are disjoint compact subsets
of E . Let D = E \ ∪N

j=1Aj . Intuitively speaking, Markov process
with darning X ∗ on E∗ := D ∪ {a∗

1, . . . , a
∗
N} is a Markov process

in E by “shorting" each Aj into a single point a∗
j .

Denote {a∗
1, . . . , a

∗
N} by K ∗. Let m∗ be the measure on E∗

defined by m∗(A) = m(A ∩ D).
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.. MPD

.
Definition..

.

. ..

.

.

Markov process with darning (MPD) X ∗ is an m∗-symmetric
Markov process on E∗ such that
(i) its part process of X ∗ in D has the same law as X D;
(ii) The jumping measure J∗(dx ,dy) and killing measure κ∗ of
X ∗ on E∗ have the properties inherited from X without incurring
additional jumps or killings, that is,

J∗ = J on D × D, J∗(a∗
i ,dy) = J(Ai ,dy) on D,

J∗(a∗
i ,a

∗
j ) = J(Ai ,Aj),

κ∗ = κ on D and κ∗(a∗
j ) = κ(Aj).

It follows that X ∗ spends zero Lebesgue amount of time at K ∗.
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.. Goal

Markov processes with darning have been constructed in
Chen-Fukushima-Ying (2006) and Chen-Fukushima (2012)
using excursion theory, under an assumption that the original
Markov process enters these compact subsets (holes) in a
continuous way.

The goal of this talk (and the paper) is to

(i) remove this restriction by using a new approach;

(ii) develop approximation schemes for general Markov
processes with darning by more concrete processes, which can
be used in simulation.
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.. Approximation by introducing jumps

Intuitively, when the jumping intensity for these additional jumps
increases to infinity, the new process can no longer distinguish points
among each Aj , which would result in shorting (or darning) each Aj

into a single point a∗
j .

For each λ > 0, consider

E(λ)(u,u) = E(u,u) + λ

N∑
j=1

∫
Aj×Aj

(u(x)− u(y))2µj(dx)µj(dy)

for u ∈ F . It is easy to see that (E(λ),F) is a regular Dirichlet
form on L2(E ;m) and it associates an m-symmetric Hunt
process X (λ). The process X (λ) is the superposition of X with jumps
among points within each Aj .
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.. Approximation by introducing jumps

X (λ) can also be obtained from X by the following piecing
together procedure. Let X 0 be the subprocess obtained from X
through killing via measure λ

∑N
j=1 µj .

• Run a copy of X 0 starting from x and set X (λ)
t = X 0

t for
t ∈ [0,T1), where T1 = ζ0 is the lifetime of X 0 starting from x .

• If ζ0 = ∞ or X (λ)
T1− = ∂, then we define X (λ)

t = ∂ for t ≥ T1.

Otherwise, X (λ)
T1− ∈ F := ∪N

j=1Aj , say X (λ)
T1− ∈ Aj1 . Select x1 ∈ Aj1

according to the probability distribution µj1/µj1(Aj) and define
X (λ)

T1
= x1.

• Run an independent copy of X 0 starting from x1 ...

• Repeat.

Jun Peng Central South University Markov Processes with Darning and their Approximations



. . . . . .

.. Approximation by introducing jumps

X (λ) can also be obtained from X by the following piecing
together procedure. Let X 0 be the subprocess obtained from X
through killing via measure λ

∑N
j=1 µj .

• Run a copy of X 0 starting from x and set X (λ)
t = X 0

t for
t ∈ [0,T1), where T1 = ζ0 is the lifetime of X 0 starting from x .

• If ζ0 = ∞ or X (λ)
T1− = ∂, then we define X (λ)

t = ∂ for t ≥ T1.

Otherwise, X (λ)
T1− ∈ F := ∪N

j=1Aj , say X (λ)
T1− ∈ Aj1 . Select x1 ∈ Aj1

according to the probability distribution µj1/µj1(Aj) and define
X (λ)

T1
= x1.

• Run an independent copy of X 0 starting from x1 ...

• Repeat.

Jun Peng Central South University Markov Processes with Darning and their Approximations



. . . . . .

.. Approximation by introducing jumps

X (λ) can also be obtained from X by the following piecing
together procedure. Let X 0 be the subprocess obtained from X
through killing via measure λ

∑N
j=1 µj .

• Run a copy of X 0 starting from x and set X (λ)
t = X 0

t for
t ∈ [0,T1), where T1 = ζ0 is the lifetime of X 0 starting from x .

• If ζ0 = ∞ or X (λ)
T1− = ∂, then we define X (λ)

t = ∂ for t ≥ T1.

Otherwise, X (λ)
T1− ∈ F := ∪N

j=1Aj , say X (λ)
T1− ∈ Aj1 . Select x1 ∈ Aj1

according to the probability distribution µj1/µj1(Aj) and define
X (λ)

T1
= x1.

• Run an independent copy of X 0 starting from x1 ...

• Repeat.

Jun Peng Central South University Markov Processes with Darning and their Approximations



. . . . . .

.. Approximation by introducing jumps

X (λ) can also be obtained from X by the following piecing
together procedure. Let X 0 be the subprocess obtained from X
through killing via measure λ

∑N
j=1 µj .

• Run a copy of X 0 starting from x and set X (λ)
t = X 0

t for
t ∈ [0,T1), where T1 = ζ0 is the lifetime of X 0 starting from x .

• If ζ0 = ∞ or X (λ)
T1− = ∂, then we define X (λ)

t = ∂ for t ≥ T1.

Otherwise, X (λ)
T1− ∈ F := ∪N

j=1Aj , say X (λ)
T1− ∈ Aj1 . Select x1 ∈ Aj1

according to the probability distribution µj1/µj1(Aj) and define
X (λ)

T1
= x1.

• Run an independent copy of X 0 starting from x1 ...

• Repeat.

Jun Peng Central South University Markov Processes with Darning and their Approximations



. . . . . .

.. Approximation by introducing jumps

X (λ) can also be obtained from X by the following piecing
together procedure. Let X 0 be the subprocess obtained from X
through killing via measure λ

∑N
j=1 µj .

• Run a copy of X 0 starting from x and set X (λ)
t = X 0

t for
t ∈ [0,T1), where T1 = ζ0 is the lifetime of X 0 starting from x .

• If ζ0 = ∞ or X (λ)
T1− = ∂, then we define X (λ)

t = ∂ for t ≥ T1.

Otherwise, X (λ)
T1− ∈ F := ∪N

j=1Aj , say X (λ)
T1− ∈ Aj1 . Select x1 ∈ Aj1

according to the probability distribution µj1/µj1(Aj) and define
X (λ)

T1
= x1.

• Run an independent copy of X 0 starting from x1 ...

• Repeat.

Jun Peng Central South University Markov Processes with Darning and their Approximations



. . . . . .

.. Limiting process

♢ When λ → ∞, process X (λ) behaves like X outside F but can
not distinguish points in each Aj . In other words, in the limit,
each Aj is collapsed into a single point a∗

j .

♢ If the limit exists, the limiting process should be Markov
process with darning of X but up to a time change.

This is because m is a symmetrizing measure for each X (λ) so under
stationarity, each X (λ) spends time in F at a rate proportional to
m(F ). So the limiting process is a sticky MPD on E∗ obtained from
X ∗ through a time change via Revuz measure

µ = m|D +
N∑

j=1

m(Aj)δ{a∗
j }.

Difficulty: Topological problem. Sudden collapse of holes at
λ = ∞.
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.. Closed symmetric form

Let (E ,F) be a closed symmetric form on on L2(E ;m); that is,
F is a linear subspace of L2(E ;m), E is a non-negative definite
symmetric form defined on F × F such that F is a Hilbert
space with inner product E1.

Resolvent on L2(E ;m): for every f ∈ L2(E ;m) and α > 0, there
is a unique Gαf ∈ F such that

Eα(Gαf ,g) = (f ,g)L2(E ;m) for every g ∈ F .

Fact: the resolvent {Gα, α > 0} of (E ,F) is strongly continuous
(that is, limα→∞ ∥αGαf − f∥L2(E ;m) = 0 for every f ∈ L2(E ;m)) if
and only if F is dense in L2(E ;m).
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. . . . . .

.. Resolvent

If F is not dense in L2(E ;m), denote by F the closure of F in
L2(E ;m). Then (E ,F) is a closed symmetric form on F . The
following facts are known. There is a unique strongly
continuous contraction symmetric resolvent {Ĝα;α > 0} on F
associated with it:

Eα(Ĝαf ,g) = (f ,g)L2(E ;m) for every g ∈ F .

So it associates a strongly continuous semigroup {P̂t ; t ≥ 0} on
F .

Let Π be the orthogonal projection operator from L2(E ;m) onto
F . Then Gαf = Ĝα(Πf ).
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.. Mosco convergence

.
Definition..

.

. ..

.

.

A sequence of closed symmetric forms {(En,Fn)} on L2(E ;m)
is said to be convergent to a closed symmetric form (E ,F) on
L2(E ;m) in the sense of Mosco if
(a) For every sequence {un,n ≥ 1} in L2(E ;m) that converges
weakly to u in L2(E ;m),

lim inf
n→∞

En(un,un) ≥ E(u,u),

(b) For every u ∈ L2(E ;m), there is a sequence {un,n ≥ 1} in
L2(E ;m) converging strongly to u in L2(E ;m) such that

lim sup
n→∞

En(un,un) ≤ E(u,u).
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.. Mosco convergence

.
Proposition (Mosco, 1994)
..

.

. ..

.

.

Let (E ,F) and {(En,Fn),n ≥ 1)} be a sequence of closed
symmetric forms on L2(E ;m). The following are equivalent:

(i) (En,Fn) converges to (E ,F) in the sense of Mosco;

(ii) For every α > 0 and f ∈ L2(E ;m), Gn
αf converges to Gαf in

L2(E ;m) as n → ∞;

(iii) When Fn and F are all dense in L2(E ;m), then (i) is
equivalent to the following: For every t > 0 and f ∈ L2(E ;m),
Pn

t f converges to Pt f in L2(E ;m) as n → ∞.

We need to extend this theorem as for MPD, F∗ is not dense in
L2(E ;m).
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.. Mosco convergence: new results

.
Theorem (Chen-Peng, 2017)
..

.

. ..

.

.

Let (E ,F) and {(En,Fn),n ≥ 1)} be closed symmetric forms on
L2(E ;m). Suppose that Fn ⊃ F for every n ≥ 1. Let (P̂n

t ; t ≥ 0}
and (P̂t ; t ≥ 0} be the semigroups on Fn and F associated with
(En,Fn) and (E ,F). Then
(i) If (En,Fn) converges to (E ,F) in the sense of Mosco, then
for every t > 0 and f ∈ F , P̂n

t f converges to P̂t f in L2(E ;m).

(ii) Suppose that the closed subspace Fn converges to F in
L2(E ;m) in the sense that lim

n→∞
∥Πnf − Πf∥L2(E ;m) = 0 for every

f ∈ L2(E ;m), where Πn and Π denote the orthogonal projection
operators of L2(E ;m) onto Fn and F , respectively. If P̂n

t f
converges to P̂t f in L2(E ;m), for every t > 0 and f ∈ F , then
(En,Fn) converges to (E ,F) in the sense of Mosco.
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.. Sticky MPD

X ∗: MPD on E∗ and µ = m∗ +
∑N

j=1 m(Aj)δa∗
j
, where δa∗ is the

Dirac measure concentrated at the point a∗
j . The smooth

measure µ determines a positive continuous additive functional
Aµ of X ∗:

Aµ
t = t +

N∑
j=1

m(Aj)L
a∗

j
t ,

where La∗
j is the local time of X ∗ at a∗

j having Revuz measure
δa∗

j
. Let τt := inf{s > 0 : Aµ

s > t} and Yt = X ∗
τt

.

.
Theorem (Chen-Peng, 2017)
..

.

. ..

.

.

For any increasing sequence {λn,n ≥ 1} of positive real
numbers that increases to infinity, the Dirichlet form (E(λn),F) is
Mosco convergent to the closed symmetric form (E∗,F∗) on
L2(E ;m).
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.. Convergence in finite dimensional sense

We can then deduce that X (λn) converges to Y in the following
finite-dimensional sense.

.
Theorem (Chen-Peng, 2017)
..

.

. ..

.

.

For every 0 = t0 < t1 < · · · tk < ∞ and bounded
{fj ;1 ≤ j ≤ k} ⊂ F̃ ,

lim
n→∞

En
m

 k∏
j=0

fj(X n
tj )

 = E∗
µ

 k∏
j=0

f ∗j (Ytj )

 ,

where F̃ is identified with F∗.
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.. Further work

♢ Heat kernel estimates for MPD

♢ Markov processes with darning (MPD) and the PDE with
boundary conditions— Microscopic and macroscopic point

♢ Invariance principle for MPD (Discrete and Continuous))

♢ Stability of Markov processes with darning on shorting
domains
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Thank you!
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